Forbidden Triples Generating a Finite set of 3-Connected Graphs
نویسندگان
چکیده
For a graph G and a set F of connected graphs, G is said be F-free if G does not contain any member of F as an induced subgraph. We let G3(F) denote the set of all 3-connected F-free graphs. This paper is concerned with sets F of connected graphs such that |F| = 3 and G3(F) is finite. Among other results, we show that for an integer m > 3 and a connected graph T of order greater than or equal to 4, G3({K4,K2,m, T}) is finite if and only if T is a path of order 4 or 5.
منابع مشابه
Forbidden subgraphs and the existence of a 2-factor
For a connected graph H, a graph G is said to be H-free if G does not contain an induced subgraph which is isomorphic to H, and for a set of connected graphs H, G is said to be H-free if G is H-free for every H ∈ H. The set H is called a forbidden subgraph. In particular, if |H| = 2 (resp. |H| = 3), we often call H a forbidden pair (resp. forbidden triple). In 1991, Bedrossian proved that there...
متن کاملComputing Szeged index of graphs on triples
ABSTRACT Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Szeged index of G is defined by where respectively is the number of vertices of G closer to u (respectively v) than v (respectively u). If S is a set of size let V be the set of all subsets of S of size 3. Then we define t...
متن کاملForbidden subgraphs generating a finite set
For a set F of connected graphs, a graph G is said to be F-free if G does not contain any member of F as an induced subgraph. The members of F are referred to as forbidden subgraphs. When we study the relationship between forbidden subgraphs and a certain graph property, we often allow the existence of exceptional graphs as long as their number is finite. However, in this type of research, if t...
متن کاملPotential forbidden triples implying hamiltonicity: for sufficiently large graphs
In [2], Brousek characterizes all triples of connected graphs, G1, G2, G3, with Gi = K1,3 for some i = 1, 2, or 3, such that all G1G2G3free graphs contain a hamiltonian cycle. In [8], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G1, G2, G3, none of which is a K1,s, s ≥ 3 such that G1G2G3-free graphs of sufficiently large order contain a hamiltonian cycl...
متن کاملPath Graphs, Clique Trees, and Flowers
An asteroidal triple is a set of three independent vertices in a graph such that any two vertices in the set are connected by a path which avoids the neighbourhood of the third. A classical result by Lekkerkerker and Boland [10] showed that interval graphs are precisely the chordal graphs that do not have asteroidal triples. Interval graphs are chordal, as are the directed path graphs and the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015